

TOPOLOGY - III, EXERCISE SHEET 9

Exercise 1. *Naturality of the Hurewicz homomorphism.*

Recall from the lectures that given a path-connected space X , there exists a well defined group homomorphism $h : \pi_n(X) \rightarrow H_n(X)$ for all $n \geq 1$. Let u be a fixed generator of $H_n(S^n)$, then the homomorphism h is given by the assignment $f \mapsto f_*(u)$. Show that the Hurewicz homomorphism is functorial in X . That is given a continuous map $\phi : X \rightarrow Y$ of topological spaces, show that the following diagram commutes:

$$\begin{array}{ccc} \pi_n(X) & \xrightarrow{\phi_*} & \pi_n(Y) \\ \downarrow h & & \downarrow h \\ H_n(X) & \xrightarrow{\phi_*} & H_n(Y). \end{array}$$

Where we abuse notation by denoting both the horizontal pushforward maps on homotopy groups and homology groups as ϕ_* and both the vertical Hurewicz maps as h . Note that in the language of category theory the above exercise says that h is a natural transformation between the functors π_n and H_n .

Exercise 2. *H_1 of a surface via Hurewicz Theorem.*

Let X be a path connected space. Recall from the lectures that the Hurewicz homomorphism induces an isomorphism of abelian groups:

$$\pi_1^{ab}(X) \xrightarrow{h} H_1(X).$$

Where $\pi_1(X)^{ab}$ denotes the abelianisation of the fundamental group of X . The goal of this exercise is to compute the first homology group of all compact connected surfaces X .

(1) Recall van Kampen's theorem that if a path connected space X is a union of open subspaces U_1, U_2 which are themselves path connected and are such that the intersection $U_1 \cap U_2$ is non-empty and path connected then the following diagram is a pushout diagram.

$$\begin{array}{ccccc} & \pi_1(U_1) & & & \\ & \nearrow i_1 & \searrow & & \\ \pi_1(U_1 \cap U_2) & & \pi_1(U_1) *_{\pi_1(U_1 \cap U_2)} \pi_1(U_2) & \dashrightarrow & \pi_1(X) \\ & \searrow i_2 & \nearrow & & \nearrow \\ & \pi_1(U_2) & & & \end{array}$$

1

In other words $\pi_1(X)$ is characterised uniquely up to isomorphism by the property that a homomorphism of groups from $\pi_1(X)$ to a group G is the same as a pair of homomorphisms $\phi_1 : \pi_1(U_1) \rightarrow G$ and $\phi_2 : \pi_1(U_2) \rightarrow G$ such that $\phi_1 \circ i_1 = \phi_2 \circ i_2$.

Show that if U_2 is contractible then $\pi_1(X) \cong \pi_1(U_1)/\langle i_1(\pi_1(U_1 \cap U_2)) \rangle$. Where $\langle i_1(\pi_1(U_1 \cap U_2)) \rangle$ is the normal subgroup generated by $i_1(\pi_1(U_1 \cap U_2))$.

(2) Recall from exercise 5 of sheet 3 that every surface Σ has a standard planar model using which it can be expressed as a quotient of a polygon. The standard planar model for $(T^2)^{\#n}$ is given by $a_1 b_1 a_1^{-1} b_1^{-1} \dots a_n b_n a_n^{-1} b_n^{-1}$ and that for $(\mathbb{RP}^2)^{\#n}$ is given by $a_1 a_1 a_2 a_2 \dots a_n a_n$. Using van Kampen's theorem show that

$$\pi_1((T^2)^{\#n}) = \langle a_1, b_1, \dots, a_n, b_n \mid [a_1, b_1] \cdot \dots \cdot [a_n, b_n] = 1 \rangle.$$

and

$$\pi_1((\mathbb{RP}^2)^{\#n}) = \langle a_1, \dots, a_n \mid a_1^2 \cdot a_2^2 \cdot \dots \cdot a_n^2 = 1 \rangle.$$

Hint: To use van Kampen's theorem come up with an open cover of the surface Σ in question by creating a cover of the planar model. Let U_1 be the open subset of the planar model given by a puncture at the centre and U_2 be the open given by a small open disk around the centre.

(3) Use the Hurewicz theorem to compute $H_1(\Sigma)$ for all compact connected surfaces Σ . That is compute the abelianisations of the fundamental groups in part (2).